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ABSTRACT 
The world has entered a state of unprecedented access to 

machine intelligence algorithms, where the ease of deployment 

has created a scenario where nearly every facet of life and 

industry has been affected by AI. Especially within industry, 

where the options for enacting AI systems are wide and varied, 

the choice of which system will work best for a given 

application can be daunting. Understanding when, where, and 

why to apply a particular algorithm can provide competitive 

advantage on effectiveness as well as greater trust and 

justification when using the algorithms’ outputs. This paper 

examines multistage manufacturing processes, where system 

complexity can greatly influence the burden of creating custom 

tailored monitoring solutions. Such barriers have encouraged 

many manufacturing small and medium enterprises (SME) to 

look towards generic ‘black box’ commercial software 

solutions, although they may lack the sufficient expertise to 

objectively determine which product best meets their 

requirements. Some of the considerations faced by SMEs are 

identifying tools that can successfully be deployed alongside a 

potential lack of sensor coverage and/or the desire for rapid 

system reconfiguration to accommodate smaller custom batch 

production sizes. In these environments, detailed analytics-

based solutions are often not feasible for production equipment 

monitoring. This paper provides a procedure for assessing the 

suitability of various tools or algorithms used to evaluate 

production process performance based on product quality 

output. This paper also presents a preliminary comparative 

example study of several algorithms to demonstrate this process 

and evaluate the selected algorithms.  

Keywords: Manufacturing simulation, problem diagnosis, 

fault isolation, evaluating algorithms.  

 

1. INTRODUCTION 
Manufacturing is a highly competitive industry where every 

decision should be qualified to ensure both effectiveness as well 

as a solid return on investment. A common choice faced by 

manufactures is the decision of if, when, and how to monitor 

both the quality of their product and the effectiveness of the 

machines used in the processes. Due to limits in resources, 

especially for SME manufacturers, the availability of 

information sources such as sensors to monitor individual 

machine effectiveness may be severely restricted or otherwise 

unsuitable for analysis. However, the two forms of information 

available to nearly any sized manufacturer are the end part 

quality and process path used to create each individual part. 

Tracking part quality information and quickly identifying 

sources of problems has become particularly important in agile 

multistage manufacturing facilities where small batch sizes and 

rapid reconfiguration are vital to maintain a competitive edge. 

Rapidly changing system dynamics can exacerbate and 

propagate problems in machine performance across multiple 

product sets, costing thousands of dollars if not quickly 

identified and managed. Selecting proper tools and methods for 

monitoring system performance is a significant decision that 

can have long-term implications for management and factory 

operators who will have to interpret and interact with any 

deployed monitoring system. Being able to understand and 

justify decisions regarding the selection of a monitoring system 

can increase confidence in that system and help users 

understand any risk associated with its use on a factory floor. 

Past research has focused on utilizing part quality data and 

part process path information to aid in the determination of 

problematic equipment or process links as the basis for 

maintenance activities [1]. Some of these activities are very 

specific, such as using historical part quality degradation to 

augment and improve linear system dynamics models to predict 

metrics such as tool wear [2]. The effort and effectiveness of 

each technique can vary widely between applications. This 

work seeks to provide a comparative analysis of several popular 

fault or problem isolation algorithms and to explore the general 

areas where they are most and least effective at identifying 

causes of part quality degradation. From this, a workflow is 

developed for testing the range of applicability of any algorithm 
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as well as a basic guide for determining suitability of tested 

algorithms for various system setups. This paper is not meant 

to be an exhaustive comparison of all popular methods of 

multistage manufacturing monitoring, instead it is directed at 

developing an environment which can be used to critically 

evaluate tools and methods in a manner which allows for 

objective comparative assessment.  

 

1.1. Background and Motivation 
Stream of variance modeling has been a staple of multistage 

manufacturing since it was introduced in the 1990s [3]. 

Developed because rigid body assumptions do not always hold 

through production, stream of variance modeling recognizes 

that multistage processes can add compounding errors through 

both parts handling and machining. Some work focused directly 

on diagnosing fixture variation in multistage manufacturing 

processes [4] and led to further investigations of machining 

errors through explicit system modeling, such as via linear state 

space models [5]. Later work in statistical process control with 

linear state space models was able to utilize probability and 

hypothesis testing to capture faulty elements within a process 

[6]. Intuitively, many of these techniques are sensitive to the 

measurements and recordings used as inputs to the monitoring 

algorithm [7], meaning that they require significant sensing 

capabilities throughout the system. Other barriers to correctly 

implementing stream of variance algorithms include creating an 

accurate representation of features, selecting an optimal parts 

sampling criteria for inspection, and developing an adequate 

level of detail in modeling of the possible process faults [8]. 

Although these and related methodologies can provide 

important and accurate information regarding the propagation 

of errors as well as their initial incident location, explicit system 

models tend to require an advanced level of expertise, both with 

the system dynamics and the algorithms themselves, to properly 

implement. Additionally, many monitoring strategies relying 

on explicit system modeling become impractical for 

increasingly complex systems. To combat this, Huang et al. 

(2002) suggest simplifications and substitutions to mitigate this 

problem of growing complexity [9]. Many of these 

simplifications are based around the notion that there are certain 

configurations which will obfuscate areas from pinpoint 

diagnosis by simple virtue of their design. Zhou et al. (2003) 

understood that areas of obfuscation within a system, while 

unavoidable in some situations, would be strictly undesirable 

from a monitoring standpoint and proposed ways to quantify 

them [10]. In general terms, areas within a system become 

indistinguishable from one another if no unique information is 

generated between any subset of elements (within that area of 

the system). 

Even with methods for simplifying the system model, often 

smaller enterprises do not develop monitoring tools that require 

explicit system models because the system dynamics change 

too rapidly to make any explicit modeling a practicality. This 

has driven investigations into less analytically-explicit 

monitoring algorithms. Further, due to the comparatively low 

amount of “stable data” produced by reconfigurable systems, 

practitioners seek algorithms that can operate with minimum 

input. One approach relies on using historical data to develop 

patterns of expected behavior from the machines based on post-

production (or intermittent production) product quality reports, 

then comparing current behavior to develop diagnostic 

information. For example, methods for comparing expected 

distribution curves [11] and data- data-driven techniques for 

variation reduction [12] are gaining acceptance in multistage 

manufacturing. 

Ultimately increasing data integration in automation and 

manufacturing depends on strong algorithms supporting human 

decision-making [13]. The strength of these algorithms depends 

on their performance evaluation and applicability. Evaluating 

the wide variety of algorithms in development and in practice 

has been inconsistent and traditionally reliant on the expertise 

levels of the developers or practitioners involved in the 

algorithm deployment. Most evaluations will stop if there exists 

a comparative analysis against one other algorithm on a limited 

set of system scenarios or data. This is due in part to the large 

time investment required to set up a large comparative study, 

but also due to a lack of understanding about how to set up such 

a study. In order to best evaluate an algorithm’s suitability for a 

system, a majority of potentially disruptive scenarios must be 

considered. Regardless of the method or selection and 

availability of input data, the procedure for qualifying an 

algorithm or tool on a system must consider a majority of 

relevant edge cases as well as the nominal expected scenarios.  

This work explores evaluating process fault or problem 

diagnostic tools with a very limited set of input data, 

specifically process path and part quality. That does not 

preclude extension of these procedures to more extensive 

algorithm testing. The choice to focus on algorithms that utilize 

limited information was motivated to both highlight the 

procedure on a simple comparative case with standard input 

parameters and to help shed light on real decision-making 

problems faced by SMEs. This case study will examine some 

of the  ‘black-box’ solutions that are being applied to this 

problem. These include probabilistic statistical algorithms, 

gradient descent, genetic algorithms, and neural networks. 

These solutions will be framed to evaluate unsophisticated 

applications similar to that as may be identified by an SME 

seeking low-cost solutions to integrating new monitoring 

programs.  

 

2. METHODOLOGY 
This paper utilizes a general workflow for testing various 

fault or problem isolation algorithms. Defined or obtained 

series of system configurations will serve as the validation 

environment for obtaining exemplar data to investigate 

representations of a wide range of normal and off-normal 

operations. Special emphasis should be placed on investigating 

scenarios for both configurations and conditions that are 

reasonably expected to exhibit themselves in practice and 

would be antagonistic towards the algorithms being evaluated. 

In most multistage manufacturing systems, it is unreasonable to 

attempt to investigate all possible scenarios; part of this work is 

meant to help guide and highlight the process of determining 

high-risk edge cases that will provide the most pertinent 

information regarding the algorithm being evaluated. The final 

steps of the evaluation procedure are to apply the selected 

algorithms and measure them via metrics most suited to the end 

goals of the production line and, if necessary, iterate through 
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the antagonistic scenarios to develop confidence in the 

coverage and performance of the algorithms. 

 

2.1. Selecting Testing Scenarios 
To show the viability and effectiveness of this workflow, a 

simulator was developed that can represent a variety of 

multistage manufacturing systems and conditions. For an actual 

manufacturing facility, it may be sufficient to simulate the 

actual or possible configurations for that specific production 

floor, possibly augmented with available historical data. This 

paper focuses on cases where the particular system that an 

algorithm will be tested on is not known beforehand. This 

additionally addresses the broader research perspective on 

which types of systems an algorithm is useful for. Testing 

various configurations follows from understanding that system 

configuration can profoundly impact the performance of the 

manufacturing process [14], and thus any monitoring tools 

deployed on them.  

Each testing scenario consists of two major aspects: the 

system configuration and the condition. The configuration 

relates to how the equipment is connected and the process flow. 

The condition conveys the health of machines, production rates, 

etc. In many systems, the large number of possible system 

configurations and conditions makes it impractical to test every 

single one. Therefore, the testing methodology focuses on three 

primary classes of scenarios: nominal, high-risk, and those that 

are antagonistic towards the algorithm being tested. Some 

scenarios may fall into multiple classes, but a proper set of 

testing scenarios should provide sufficient coverage 

representing these classes as evenly as is practical. Finally, each 

scenario has a likelihood that gives a relative expectation of 

how often that scenario would be expected to occur in the 

lifetime of the system. 

A major driver in selecting scenarios is the potential 

consequences of that scenario, both good and bad. 

Understanding the potential outcomes of combinations of 

missed fault alarms, false fault alarms, as well as correct alarms 

all can help drive the selection of scenarios. Coupled with the 

associated frequency, a potential risk for each scenario can be 

developed and used to identify important test cases. The risk 

metric (frequency * consequences) should be evaluated in terms 

most suited to the application. In a manufacturing setting, for 

example, risk can be measured as production loss per hour. 

Once acceptable levels of risk are established, any scenario 

which falls below that can be safely ignored. 

 

2.1.1. Low-Risk High-Frequency and High-Risk 
Scenarios 

The scenarios that should be developed first are those 

capturing the most common configurations and expected 

conditions of the factory environment. Even if the risk of these 

scenarios is fairly low, the fact that they are the most common 

scenarios necessitates their evaluation for any potential 

monitoring algorithm. These include scenarios such as a single 

faulty machine that does not stop operations. One occasionally 

overlooked scenario that should always be included is the most 

common configuration(s) with fault-free, nominal conditions. 

This is critical to help characterize the false positive rates of any 

diagnostic algorithms and establish a risk based on false alarms. 

The second priority scenarios are those that may or may not 

be common but present a high-risk factor if the algorithm is 

unable to correctly identify the source of incipient defects or 

problems. High risk can come from both false positives and 

false negatives in terms of identification and must be evaluated 

for different combinations of both.  

 

2.1.2.  Antagonistic Scenarios  
Antagonistic scenarios are less intuitive because they are 

typically more dependent on the algorithm than the physical 

process, but they are important to understand when interpreting 

evaluation testing. Antagonistic scenarios are configurations 

and conditions for which an algorithm is expected to perform 

poorly based on the assumptions and capabilities of that 

particular algorithm. These types of scenarios may not be 

known prior to the evaluation of the algorithm, but if a set of 

poor performing scenarios begins to develop, any identifiable 

commonalities can be used to group the full set of test scenarios 

and add extra examples to those groups if needed. 

Once a set of antagonistic scenarios is developed, the 

existing suite of test scenarios can be checked for how 

commonly those antagonistic qualities occur. If they are 

prevalent, especially in high risk scenarios, there may not be a 

need to continue evaluating that algorithm, because it would be 

expected to perform poorly in these high-risk scenarios. 

However, if there are not many scenarios with these common 

traits, it is prudent to construct more such scenarios and 

evaluate if these have a high enough cumulative risk to affect 

the decision of accepting the algorithm. 

 

2.2. Obtain Evaluation Data 
Simulations and/or historic data will be required to perform 

these tests. Where available, simulators would generally be 

desirable to augment the available scenarios that can be 

evaluated. Real systems with huge backlogs of data can be used 

as an initial set of testing scenarios, but it is unlikely that real 

systems have substantial amounts of high-risk data under the 

array of faulted conditions that would be desired to fully 

evaluate a potential scenario. The flexibility of a simulator, 

augmenting any available real scenario data, allows for better 

exploration of high risk and antagonistic scenarios. Existing 

data or logs of activities can also be used to help develop the 

associated frequencies and consequences of any scenario. 

Maintenance and production logs may be a good source of this 

information. 

 

2.3. Evaluate Algorithms 
Once the test scenarios and data has been obtained, the 

algorithms should be streamed onto the data as they would 

receive it in an actual production environment. For example, if 

there is not a live stream of the product quality available in the 

plant, then the algorithm should be provided batch style updates 

with corresponding time stamps and other relevant meta-data. 

The processing time of the algorithm under evaluation should 

also be noted at this time. If the routine takes longer to process 

than the update rate for the system, special considerations and 

accommodations must be made, such as artificially slowing the 

input rate. If this cannot be done, or the accommodations are 
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too severe to work at scale, the algorithm may be deemed 

unusable without further testing. 

 

2.4. Representing Key Algorithm Performance 
Indicators 

When evaluating algorithms, it is important to select 

performance indicators that not only reflect the performance of 

the algorithms but do it in a way that is relatable to the end goals 

of the monitoring algorithms. For most diagnostic isolation 

problems, the most important metrics are those that directly 

relate to negative consequences: false positives - identifying a 

fault where there isn’t one, false negatives - failing to identify a 

fault, and circumstances that produce both. Because the 

repercussions of these three outcomes are generally 

significantly different and may even relate to specific 

equipment within the system, it is most appropriate and 

convenient to record the performance of the algorithms as a 

series of confusion matrices, one for each testing scenario. The 

important aspect for a risk-based evaluation is that each testing 

scenario have a numeric representation of the rate of negative 

consequences that can be translated into a probability during the 

final evaluation. 

 

2.5. Summary 
Below is a summary of the algorithm evaluation process 

presented in this section. The methods and selection criteria 

presented in this section are not intended to be interpreted as the 

only, or best possible criteria for every case. Instead they are 

described as a possible set that would be applicable in most 

cases and are the methods used in this work. The next section 

will describe the specifics of this work as applied to the 

developed test cases. The algorithms chosen for evaluation are 

also described, followed by the general outcomes of that 

investigation. 

 

1. Define Testing Environment  

2. Select Testing Scenarios 

a. Nominal and High-Risk Scenarios 

b.  Antagonistic Scenarios 

3. Obtain Data Covering Selected Scenario 

4. Evaluate Selected Algorithm(s)  

a. Check Usability / Operational Concerns 

b. Evaluate Performance 

5. Repeat as needed to discover edge cases with poor 

performance 

 

3. PROOF OF CONCEPT CASE STUDY 
This case study highlights the methodology for evaluating a 

specific class of monitoring algorithms that may be used to 

determine potential locations of induced damage or defects in 

products output from multistage manufacturing processes. The 

scenarios and configurations presented are selected to allow 

broad level performance investigation of algorithms on a 

potentially unknown system. A simulator was created as part of 

this work to rapidly create arbitrary scenarios generating the 

required end-of-line part quality and part process production 

path data. This data is then used to evaluate multistage 

manufacturing system diagnostic algorithms. The setup of the 

simulator includes the manufacturing system configuration 

(section 3.1), test case scenarios that characterize nominal and 

edge cases faced by the system (section 3.2), and diagnostic 

algorithms applied to analyze the scenarios (section 3.3). This 

evaluation is presented as preliminary work and additional 

work is needed to completely characterize the algorithms under 

evaluation. 

 

3.1. Define Testing Environment 
Figure 1 shows an example of different multistage 

manufacturing paths to produce a part, given a limited number 

of paths and available machines. Machines can be used across 

multiple paths (process plans), subject to timing restrictions, 

resulting in a directed graph representation of product 

production. Here we assume that it is possible for different 

production paths to use the same machine, but not possible for 

any path to use a particular machine more than once (reentrant 

flows). The subset of machines within each process path is 

assigned, either randomly or manually, at the beginning of each 

scenario and held static for the duration of the test.  

The type of manufactured product is unspecified during the 

simulation, but it is assumed that quality metrics of any 

produced parts are scalable to some equivalent metric. Each 

part is given a single score (Q_part) to indicate its build quality 

at the end of its sequence (end-of-line part quality). End quality 

assessments (Q_part) are scaled to a percentage of 

acceptability, where 100 % is perfect and anything below 0 % 

is considered lost product. This score relies on the added value 

from each machine that the part interacts with in its production 

path. Added quality value to the part is uniform across all 

machines unless the part interacts with a machine that 

underwent a sudden degradation or failure. In this case, the 

degraded machine will subtract from the part’s accumulated 

value. Currently, part quality inspection is limited to the end of 

each production path. 

Although simplified and abstract, this system configuration 

simulator exhibits key behaviors of real-world production 

settings, including resource constraints, a limited number of 

production path setups, and the limited number of available 

machines for production.  Further development of the system 

configuration in future studies will include constraints on 

machine-ordering in a path (i.e., having rules such as “machine 

#6 may never be used before machine #3”) and available 

 
Figure 1. An example of three, unique three-stage machining paths 

to produce a part given five available machines. 
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machines categorized by different types, with constraints on the 

number of each machine type required to build a part. The 

machines may also have a more expansive feature space that 

determines each machine’s added value to a part’s quality.  

 

3.2. Select Testing Scenarios 
The above setup provides a framework to simulate 

different scenarios that could be used to evaluate multistage 

manufacturing system diagnostic algorithms that attempt to 

identify causes for part quality degradation. The focus in this 

paper is on part quality degradation due to sudden machine 

degradation or failure. The simulator receives specifications 

that after a certain number of products, a subset of the total set 

of available machines will degrade their added manufacturing 

values to the quality of parts that interact with it. As the quality 

for each part relies on the accumulation of the added values 

from all machines that are in the part’s production path, the 

paths that have one or more of these degraded machines will 

output parts with lower end-of-line part quality values. Figure 

2 illustrates a temporal view of the part quality outputs for an 

example test case scenario. Note that although the scalar part 

quality values are arbitrary, there is a drop-in value for parts 

that have been processed by some of the paths (that include the 

machine degradation at t=200 s).  

The inputs into the configuration of the simulator are the 

number of machines on the “production floor”, the number of 

processing steps each item needs to be created, the number of 

production paths or lines that a part can be created on, and the 

rate at which those parts are made. These inputs define a system 

of machines and paths involved in the multistage manufacturing 

process to produce each part. These key manufacturing 

parameters that go into the system configuration are 

summarized in Table 1. Presented in this paper are two 

preliminary scenarios defined by the values given in Table 1. 

Test case scenarios are built to evaluate how well 

diagnostic algorithms identify degraded machines. In 

particular, it is interesting to evaluate the response of these 

diagnostic algorithms to different numbers of machines 

degraded at a time. Using the number of degraded machines as 

the main experimental factor in test case scenarios provides 

insight into the usability and accuracy of each tested algorithm 

for different numbers of degraded machines. These test cases 

are implemented on the two system configurations in Table 1.  

For the first system configuration example, where there are 

13 unique production paths and 4 machines (selected from an 

available 10) in each path, there are three levels to the 

experiment factor: one, two, or three machines are degraded. A 

maximum of three degraded machines is selected because it 

reaches sufficient coverage over scenarios where most of the 

machines in some production paths (3 of 4) are producing 

undesirable results.  

Ten experiments, or test case scenarios, are performed for 

each of these three machine degradation levels. Each of these 

experiments is performed with different randomly-selected 

permutations of degraded machines. Ten is the maximum 

number of permutations when only one machine degradation 

occurs out of ten available machines. The number of possible 

permutations for two or three machine degradations is much 

higher. For the sake of brevity and producing initial results, the 

other machine degradation levels were limited to ten test case 

scenarios as well.  

 
Figure 2. Example of a temporal view of part quality production. 

Machine degradation begins at t=200 s. Subsequently, paths that 

include the degraded machine produce lower-quality products.  

Table 2. Test Case Scenario Setup 

 System #1 System #2 

Number of Factor Levels 3 4 

Number of Experiments 

Per Level 

10 12 

Total Number of Test 

Case Scenarios 

30 48 

Degradation Start Time 

(s) 

200 200 

Number of parts 

(stopping time) 

500 800 

 

Table 1. System Configuration Parameters 

Description System #1 System #2 

Total number of 

available machines 

10 12 

Machines in a 

production path 

4 6 

Number of unique 

production paths 

13 20 

Part production rate 

(part per second) 

1 1 
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Test case scenarios are similarly designed on the second 

system configuration example, where there are 20 unique 

production paths and 6 machines (out of an available 12) in each 

path. Since the scope of this example’s multistage 

manufacturing system is larger, there are instead four levels to 

the experiment factor (a maximum of four degraded machines) 

and 12 experiments with different permutations at each level 

(12 is the maximum number of permutations when only one of 

12 available machines degrade). Table 2 summarizes the test 

case scenario setup for each of the system configurations in 

Table 1. 

The simulator generates the scenarios and stores the 

machines that degrade in each test case. The sequence of 

machines in the paths of each system configuration is held 

constant against the different machine degradation schemes 

from the test cases. This allows for applying diagnostic 

algorithms on each of these test case scenarios to compare their 

prediction of degraded machines against the actual machine 

failures as well as to evaluate their applicability to different 

machine degradation scenarios (i.e. different numbers of 

machines that degrade at a time). 

The system configuration and test case scenario setups also 

enable the derivation of different properties from the system 

configurations. These properties may include the frequency of 

degraded machines within all the production paths or the 

amount of information that can be distinguished from the 

machines traversed in each path. This gives the opportunity to 

manipulate the properties and observe the prediction response 

of diagnostic algorithms to changes in different properties in the 

system configuration. This provides insight into the 

applicability and limitations of the diagnostic algorithms when 

there are changes in the system configuration. Discovering 

these insights requires changing the test case scenario setup to 

use the derived properties as experimental factors in a more 

extensive, robustly-designed experimental methods [15]. 

Deriving these properties and designing experiments around 

them are topics intended to be explored in future studies. Also, 

this paper has only been looking into the case of sudden 

machine failures. Future studies will expand to look at different 

types of machine failure modes, such as observing when 

diagnostic algorithms identify more gradual machine 

degradations. 

 

3.3. Diagnostic Algorithms Application Setup 
Five different diagnostic algorithms have been selected for 

evaluation and applied on each of the test scenarios for this 

work. Each algorithm makes use of only two sources of 

information: the end-of-production-line part quality, and the 

part process production path. Testing different algorithms 

allows to identify strengths and weaknesses of each one with 

respect to the different system configurations, amounts of 

machine induced degradation, and locations of induced 

damage. The selected algorithms are only a small random 

sampling of potentially useful methods for isolating induced 

faults on a multistage production line. The following describe 

the five algorithms tested. 

 

3.3.1. Probabilistic Statistical Algorithms 
One of the more intuitive mechanisms for performing 

diagnostic isolation is to evaluate the probability or likelihood 

that a given machine is producing a defective part based directly 

on the observed outputs corresponding to that process element. 

This could be framed under the guise of temporal difference 

reinforcement learning, a relative to Q learning. Presented 

below are two algorithms that utilize the intuitive nature of the 

process to create logical evaluations of the relative probability 

any given machine (process element) is inducing damage on the 

final observed product. 

 

Part Quality Contribution Indicator (PQCI):  

The first algorithm uses a running log of parts produced by 

each machine. It checks the ratio of the quality of parts operated 

on by a particular machine versus the quality of parts that were 

not. It uses this comparison to determine an estimate of the 

average induced damage at that machine. For this study, the 

quality of the last ten parts to be operated on by each machine 

is kept and measured. One of the obvious shortcomings of this 

method is that if a machine does operate on a significant number 

of parts as compared to the total number produced, it will be 

slow to identify the problem machine. However, with even 

levels of part flow or if the problem element is not a high-risk 

machine, then this algorithm may be expected to perform 

suitably for many scenarios. 

 

Estimated Part-Path Contribution Indicator (EPPCI): 

The second algorithm investigated also makes use of a 

moving window of part quality to produce diagnostic 

indicators. However, this algorithm keeps running logs of each 

process path instead of one for each individual processing 

element. In scenarios with relatively few process paths, this 

may improve scalability. Conversely this could also hinder 

scalability in highly complex system configurations with a large 

number of paths. 

By performing a simple calculation using the system 

configuration and path quality logs, this algorithm calculates 

the average product quality of each machine per path to identify 

both the best and the average part quality produced by each 

machine based on the paths that include it. This method 

attempts to circumvent the potential problem of having certain 

process links, instead of individual machines, be the source of 

induced errors. For this paper, isolation of links was strictly 

excluded as it is intended for future papers, but the setup of this 

algorithm begins that process. Regardless, this algorithm would 

also be expected to perform well in isolating individual problem 

machines and so is evaluated on such here. 

 

3.3.2. Prediction Error Minimization Algorithms 
There are a class of low entry barrier machine learning 

tools and algorithms that attempt to minimize some predictive 

function designed to describe the observed output of the system. 

The commonality of this class is the need for that descriptive 

function. In this case, a simple minimization between the 

observed product damage (1 – Quality) for each machine and 

the predicted total amount of added damage from the processing 

machines. Assuming each machine linearly adds a calculable 

amount of damage to the product during processing, this class 
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of algorithms can estimate the average amount of that damage 

that is added by each machine. 

 

𝐸𝑄(1)    𝐸𝑟𝑟𝑜𝑟 =   𝑎𝑏𝑠( (1 − 𝑠𝑢𝑚(𝐼𝐷𝑎𝑚_𝑚𝑎𝑐ℎ𝑠_𝑝𝑎𝑟𝑡))  
−  (1 –  𝑄_𝑝𝑎𝑟𝑡)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑠 

 

The selected predictive equation of error for a system, shown in 

Eq(1), is utilized for three different diagnostic algorithms. 

Based on simple Gradient Descent (GD), one on Genetic 

Algorithms (GA), and one on applied Neural Networks (NN). 

Regardless of the mechanical implementation, these tress 

routines are all essentially trying to minimize this error function 

by producing induced damage estimations (IDam) for each 

machine.  

 

Gradient Descent (GD): The Gradient Descent based method 

utilizes a standard off-the-shelf product (Matlab’s fmincon) to 

search the possibility space for the combination of each 

machining element between sensible limits set by the user. For 

simplicity in this test, the choice was made to limit the possible 

damage induced by each machine to be between 0 (no damage) 

and 1 (complete loss of product acceptance). While other 

implementations of this algorithm may find other bounds more 

suitable, these are simple enough to cover a broad range of cases 

and limit processing time to a functionally usable amount. 

 

Genetic Algorithms (GA): Considered a generally more robust 

optimization method, genetic algorithms have been used 

extensively on optimization problems due to their broad 

applicability, ease of use, and global perspective [16]. Like the 

gradient descent method above, a genetic algorithm is applied 

to test case scenarios to minimize the objective function in Eq. 

(1). The optimization process also outputs each machine’s 

contribution to part quality degradation and a prediction of the 

machines that have degraded. To ensure the feasibility of the 

predictions of machine degradations, the algorithm was iterated 

5 times over each test case scenario and its predictions were 

averaged. The genetic algorithm implemented in Matlab’s 

Global Optimization Toolbox was evaluated using its default 

options (i.e., population size = 50, maximum number of 

generations = 100). 

 

Neural Networks (LSTM): The final prediction error 

minimization technique applied in this work is a Long Short 

Term Memory (LSTM) based neural network. These are a 

special form of recurrent neural networks, which as explained 

by [17], are better able to process time series information due 

to having storage potential creating an effective memory of 

local trends. Neural networks have become standard machine 

learning tools due to their ease of use, effectiveness as 

classifiers, and practicality for obtaining features out of a 

dataset. The LSTMs created for this work serve to provide not 

only preliminary insights on their applicability, but also to 

justify further testing on additional architectures and 

configurations in future studies.  

The selected network configuration under evaluation has a 

sequence input layer, a series of two hidden LSTM layers (each 

followed by a 20 % dropout layer), one fully connected layer, 

and a final regression layer. The input vector to the LSTM 

network includes the part quality and a corresponding binary 

vector representing production path elements of that part. 

Creation and execution of the LSTM network was performed 

using Matlab’s Deep Learning Toolbox. The specifics of 

hyperparameter selection and architecture development are 

beyond the scope of this work. The process used here to 

compare various algorithms could be equally suited for 

comparing various neural network architectures. 

 

4. TEST RESULTS 
The results of evaluating the algorithms discussed in Section 

3.3 compare their ability to identify damage-inducing machines 

in different scenarios and begin to establish their expected 

performance for classes of scenarios. The five diagnostic 

algorithms are evaluated and compared by applying them to the 

test scenarios (see Table 2) developed for each of the two 

multistage manufacturing system configurations (see Table 1). 

That is 30 test case scenarios for system configuration #1, 

evenly divided into 3 different categories of test cases, and 48 

test case scenarios for system configuration #2, evenly divided 

into 4 different categories.  

Each algorithm is evaluated using metrics chosen to 

measure the algorithm’s performance at diagnosing machine 

degradation. To relate to real world based effects, metrics that 

can be directly combined with negative scenario consequences 

were selected: the false negative rate (FNR), the false positive 

rate (FPR), and the combination of the two. The false positive 

rate is calculated as the number of good machines incorrectly 

predicted to be inducing damage divided by the total number of 

machines that are operating in the system (Type-I error). 

Likewise, the false negative rate is calculated as the number of 

machines inducing damage not isolated by the algorithm 

divided by the total number of machines that are indeed 

producing damaged units (Type-II error). Not identifying a 

machine as a source of damage incurs costs associated with 

manufacturing defective parts and goods. While incorrectly 

identifying a machine as a source of damage incurs costs from 

misspent maintenance, inspection, and production downtime. 

Figures 3A and 3B summarize the evaluation results from 

applying each of the five diagnostic algorithms to the selected 

test scenarios. In system configuration #1 there are three classes 

of test case scenarios corresponding to the number of machines 

that are producing degraded products: one, two, or three 

machines.  Each diagnostic algorithm, except the LSTM neural 

network, is applied over the ten scenarios in each category. The 

resulting FNR and FPR evaluations are averaged for each 

category. This is similarly done for system configuration #2, but 

with four different level categories of test case scenarios and 

twelve test cases in each category.   

Due to the requirements for development of a neural 

network, the LSTM network testing was performed differently. 

Rather than evaluate its performance on each category of test 

scenarios individually, the LSTM was trained, tested, and 

evaluated on all the test case scenarios available for each system 

configuration (30 test cases for system #1 and 48 for system 

#2). The model randomly selected 67 % of each configuration’s 

test case scenarios as training data and the rest of the scenarios 

as testing data. This ensured that the network had training of 

various conditions on each configuration, allowing it to produce 



   

 

8 

predictions of both nominal and problem status of machines. 

This also means that the LSTM’s evaluated FNR and FPR 

metrics in Figures 3A and 3B cannot be directly compared to 

the corresponding evaluations of the other algorithms, but it still 

points towards preliminary insights into the applicability of 

neural networks for machine failure predictions. The LSTM 

results are included here for completeness but will be 

readdressed in future work. 

As structured in Section 3.3, the algorithms listed each 

produce relative values for problem likelihood. In order to 

translate this into a classification of ‘problem’, ‘no problem’, a 

series of thresholds must be established. A threshold of -0.1 

likely induced damage is selected as a discriminator for 

evaluating PQCI and EPPCI. GD and GA have been framed to 

operate on a different scale which translates their cutoff to a 

threshold of 0.6 is selected as the discriminator for evaluating 

both GA and GD.  

Like the GD and GA, the LSTM neural network also tries 

to predict which machines have contributed to part quality 

degradation. This means the threshold must also be between 0 

and 1 to quantify the degree of a machine’s contribution to part 

degradation. However, training the neural network on all the 

test case scenarios of each system configuration means that it 

tried learning from a wider range of antagonistic test case 

scenarios (rather than make a prediction from one test case at a 

time like the other four algorithms). This decreases the 

confidence in the predictions and so the discriminating 

threshold was lowered to 0.3.  

At first glance, the results in Figures 3A and 3B show that 

the GD and GA algorithms provide superior performance to all 

the other algorithms. GD results in FNR and FPR values of 0, 

meaning it never identifies a failed machine as operational or 

an operational machine as degraded. This result is similar for 

GA, except a small false negative rate is produced when there 

are 3 machine degradations in system configuration #1. This 

supports a hypothesis that GD and GA will not make perfect 

predictions when there are too many machine failures in a 

production line. More testing is needed to see if this is indeed 

the case and to identify antagonistic test scenarios that may 

hamper the performance of GD and GA.   

The PQCI and EPPCI algorithms exhibit trade-offs with 

each other. EPPCI produced no false negatives – no predictions 

of failed machines as operational - in any of the test case 

scenario levels for either system configuration. However, 

EPPCI produces a lot of false positives, especially for test cases 

where there are more machines that simultaneously degrade. It 

especially showed bad performance for multiple machine 

degradations in the second system configuration. On the other 

hand, PQCI produced false negatives that increased with more 

machine degradations, but it showed consistent levels of false 

positive rates that did not increase (drastically) with more 

machine degradations. The strength of one of these two 

algorithms over the other depends on the costs of having false 

negatives versus false positives in a manufacturing setting. 

The predictive performance of both PQCI and EPPCI does 

not show to be as good as GD and GA, but their potential for 

scalability of more complex systems and to search for more 

indirect link based problems shows more promise. GD and GA 

attempt to search a full error space which grows exponentially 

with system complexity, while the evaluation space of the Q-

learning space of PQCI and EPPCI grows linearly. 

These insights are invaluable for creating antagonistic 

scenarios for further testing and evaluation of the algorithms. 

When identifying antagonistic test scenarios, an algorithm may 

have associated ranges of FNR and FPR that could help to 

further generalize the evaluation outcome. By properly 

combining the likelihood of these categories of test cases, their 

FNR and FPR values, an aggregated weighted evaluation of 

each diagnostic algorithm could be made to augment the 

existing test scenarios. This additional 'virtual testing' can save 

time and resources, while still valuably expand the coverage of 

the algorithm evaluation. 

The LSTM neural network does provide many false 

negatives but produced false positive rates that are comparable 

 
Figure 3. Evaluation results for applying the five diagnostic 

algorithms to predict machine degradation for three different test 

case scenario categories of: (A) system #1 and (B) system #2. 
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to PQCI and EPCCI. A portion of the unfavorable results is due 

to training the LSTM on all test case scenarios for each system 

configuration. This points to the conclusion that learning on too 

many different antagonistic scenarios may not be as helpful for 

making machine failure predictions – there is a trade-off 

between the number of different antagonistic scenarios and the 

quality of the machine failure predictions. It will be helpful to 

see how the LSTM network performs when learning from and 

being applied to only one test case category level at a time. 

Furthermore, the LSTM network presented here is supposed to 

showcase preliminary work in the area, and more work will be 

done to fine-tune LSTM-related hyperparameters or evaluate 

other neural network structures.  

 

5. CONCLUSIONS AND FUTURE WORK 
This study showcases a preliminary understanding, 

applicability, and comparison of diagnostic algorithms (Section 

3.3) when applied to predict machine failures in different 

simulated scenarios. The goal is to develop procedure 

recommendations for applying diagnostic monitoring 

algorithms across different scenarios, ranging from nominal 

expected scenarios to edge cases, faced by generic system 

configurations or particular configurations.  

Further work needs to be done to extend the selection space 

of testing scenarios that are covered by the evaluation 

methodology, and to increase diagnostic algorithm 

development and evaluation. Two areas of particular interest 

right now include, 1) further development of risk assessment as 

an algorithm evaluation criteria, and 2) extending quality 

inspection to include mid-production process inspections. 

Algorithm evaluation can more precisely assess risk by 

incorporating costs and consequences associated with false 

negative and false positive machine degradation predictions, as 

well as relative likelihoods of different scenarios faced by the 

system configuration. This risk metric will represent more-

practical effects and trade-offs of algorithms in relatable real-

world measures beyond abstract classification metrics. In this 

preliminary study, the part quality inspection was conducted 

only at the end of the production path. This inspection data can 

be used to determine points in the production line that may 

require additional inspection or maintenance effort. These 

additional inspection points may provide diagnostic algorithms 

with more data collected throughout the production path and 

more context to make better predictions. 

 

DISCLAIMER 
The use of any products described in this paper does not imply 

recommendation or endorsement by the National Institute of 

Standards and Technology, nor does it imply that products are 

necessarily the best available for the purpose. 
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